Labetalol facilitates GABAergic transmission to rat periaqueductal gray neurons via antagonizing beta1-adrenergic receptors--a possible mechanism underlying labetalol-induced analgesia.
نویسندگان
چکیده
Labetalol, a combined alpha1, beta1, and beta2 adrenoceptor-blocking drug, has been shown to have analgesic properties in vivo. To determine the underlying mechanisms, we examined its effects on GABAA receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) and spontaneous firings of rat ventrolateral periaqueductal gray (PAG) neurons, either mechanically dissociated, or in acute brain slices. These PAG neurons mediate opioid-mediated analgesia and pain transmission and are under tonic control of GABAergic interneurons. An increase in GABAergic transmission to these neurons yields an inhibitory hyperpolarized state and may interrupt pain signal transmission. Using patch clamp techniques, we found that labetalol reversibly increases the frequency of sIPSCs without changing their mean amplitude. This indicates that labetalol enhances GABAergic synaptic transmission by a presynaptic mechanism. Metoprolol, a specific beta1-adrenoceptor antagonist, also reversibly enhanced sIPSC frequency. In the presence of metoprolol, labetalol-induced increase in sIPSC frequency was significantly attenuated or even abolished. These results suggest that labetalol shares the same pathway as metoprolol in enhancing GABAergic transmission via an inhibition of presynaptic beta1-adrenoceptors. We further showed that labetalol reversibly reduced the firing rate of PAG neurons. This reduction was significantly attenuated in the presence of bicuculline, a selective antagonist of GABAA receptors. These data indicate that labetalol-induced inhibition of PAG cell firing is attributable to its potentiation of GABAergic transmission. Based on these data, we postulate that labetalol-induced analgesia is at least in part ascribed to its antagonistic effects on presynaptic beta1-adrenoceptors.
منابع مشابه
Presynaptic nicotinic acetylcholine receptors enhance GABAergic synaptic transmission in rat periaqueductal gray neurons.
The periaqueductal gray (PAG) is a major component of the descending pain inhibitory pathway, which is related to central analgesia. In the present study, we have investigated the possible roles of presynaptic nicotinic acetylcholine receptors in GABAergic transmission onto PAG neurons. In acutely isolated rat PAG neurons, GABAergic miniature inhibitory postsynaptic currents (mIPSCs) were recor...
متن کاملT-type channels control the opioidergic descending analgesia at the low threshold-spiking GABAergic neurons in the periaqueductal gray.
Endogenous opioids generate analgesic signals in the periaqueductal gray (PAG). However, because cell types in the PAG are difficult to identify, its neuronal mechanism has remained poorly understood. To address this issue, we characterized PAG neurons by their electrical properties using differentially labeled GABAergic and output neurons in the PAG. We found that GABAergic neurons were mostly...
متن کاملActions of cannabinoids on membrane properties and synaptic transmission in rat periaqueductal gray neurons in vitro.
The midbrain periaqueductal gray (PAG) is a major site of cannabinoid-mediated analgesia in the central nervous system. In the present study, we examined the actions of cannabinoids on rat PAG neurons in vitro. In brain slices, superfusion of the cannabinoid receptor agonist WIN55,212-2 inhibited electrically evoked inhibitory and excitatory postsynaptic currents in all PAG neurons. The endogen...
متن کاملDivergent Modulation of Nociception by Glutamatergic and GABAergic Neuronal Subpopulations in the Periaqueductal Gray
The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAer...
متن کاملFatal hepatotoxicity induced by hydralazine or labetalol.
Antihypertensive agents have been associated with adverse reactions that, if unrecognized by health practitioners, may have devastating consequences. The pattern of hepatotoxicity observed during therapy with the vasodilator hydralazine is highly variable, often making its diagnosis difficult. Serious hepatic injury induced by the alpha- and beta-adrenergic receptor antagonist labetalol has onl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 1198 شماره
صفحات -
تاریخ انتشار 2008